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Abstract

A combined numerical and experimental study was performed to determine the turbulent heat transfer on a sta-

tionary disk, which is situated in a close distance from a rotating disk. The RNG k–e model and the steady-state liquid

crystal technique were employed respectively in the numerical simulation and the experiment. In the range of the ro-

tational Reynolds number from 1:42� 105 to 3:33� 105, the heat transfer rate on the stator and the flow characteristics

in the gap between the disks are presented. The results revealed that there exists an optimum rotor–stator distance for a

given Reynolds number, at which the average heat transfer on the stator reaches maximum. When the Reynolds

number increases, the maximum shifts towards smaller disk-distances.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Rotating disks are common geometry in engineering

machineries. Noticeable examples include radial flow

compressor and turbine, electrical machinery, rotating

heat exchanger, disk brake and friction pump. Charac-

teristics of fluid flow and heat transfer around/on ro-

tating disk(s) have enjoyed constant attention from

researchers over the past century. A review of relevant

literature may be found in Ref. [1].

In the early studies much attention had been given to

the flow characteristics around rotating disk(s) rather

than the heat transfer. Batchelor considered the solution

of the Navier–Stokes equations for the case of contra-

rotating infinite disks in the range of �16CX 6 0 [2].

Assuming similarity solutions, Batchelor produced or-

dinary differential equations from which he deduced the

behavior of the streamlines. For CX ¼ 0, i.e. the rotor–

stator case, he concluded that there was a radial outflow

in a thin boundary layer on the rotating disk and inflow

on the stationary disk, and a rotating core of the fluid in

between. However, Stewartson provided different con-

clusions for the same problem [3]. By his results, for low

Reynolds numbers (Xs2=m6 40) and CX ¼ 0, there was a

boundary layer on the rotating disk but none on the

stationary one. There was no evidence of the core ro-

tation predicted by Batchelor. He also carried out ru-

dimentary experiments to verify the conclusion. A

discussion about this problem can be found in [4]. For

infinite disks, there are multiple solutions of the equa-

tions, of which Batchelor�s and Stewartson�s are both

possible. For finite disks, however, the solution depends

on whether the disks are open or enclosed: an enclosed

rotor–stator system tends to produce Batchelor-type

flow with core rotation; disks open to the ambience tend

to produce Stewartson-type flow with no core rotation.

Daily and Nece [5] studied the transitional charac-

teristics of the flow in a sealed rotor–stator system. They

gave an estimated value for the rotational Reynolds

number at which turbulence originates, Re ¼ 1:5� 105.

This is below the value of 2:8� 105 for a free disk in air.

In [6] Cooper and Reshotko found that the transition

occurred in the range of Re ¼ 1:6� 105–2:5� 105 for a

rotating disk next to a parallel wall.

Wagner for the first time, to the knowledge of the

authors, developed an expression for the convective

heat transfer coefficient from a heated rotating disk [7].
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Experiments have also been carried out by others with

remote infrared and liquid crystal technique to investi-

gate the heat transfer rate on the surface of a rotating

disk [8,9]. For laminar flow, the distribution of heat

transfer coefficient stays high at the center and then

becomes relatively constant for the rest of the surface.

For turbulent flow, however, the distribution declines

from the center till a minimum, then increases with a

large slope towards the edge of the disk.

Kreith et al. [10] examined the effects on heat transfer

of placing a stationary, adiabatic surface parallel to a

heated rotating plate at variable distances using the

naphthalene technique. They concluded that the pres-

ence of the stationary plate decreases the effectiveness of

heat transfer from the rotating disk. Numerical simula-

tions of laminar flow and heat transfer between a sta-

tionary and a rotating disk with throughflow showed

that the flow between these disks has re-circulation

zones near the locations where the air entered and exited

the space between the disks, which affect the heat

transfer and other flow characteristics [11]. It was found

that both rotational and throughflow Reynolds numbers

influence the flow structure [12]. In general, the basic

unicellular structure occurs for low Reynolds number

flow. With the increase of the throughflow Reynolds

number, a multi-cellular flow structure may be found.

The similarity solutions were also found to be inappro-

priate for approximating the real flow between finite

disks. In shrouded rotor–stator systems, the flow tran-

sition from laminar to unsteady motion occurred

abruptly at some Reynolds number, without any oscil-

latory behavior [13]. The heat transfer on the rotating

disk was numerically and experimentally studied and

compared for rotational Reynolds numbers up to 1:5�
106 in [14]. If the rotating speed is high enough and a

proper working fluid is chosen, the rotor–stator system

can even be used as a heating mechanism [15].

The system of co-rotating disks is another kind of

configuration with respect to rotation. It may relate to

throughflow [16,17] or effect of thermal buoyancy [18].

When the axial throughflow is distributed along the

radius of the disk, either wall injection or wall suction

will have an appreciable effect on flow structure and heat

transfer performance [19]. In the case of hot-wall/cold-

fluid, the centrifugal buoyancy has a suppression effect

on the skin friction and heat transfer rates. The wall

conduction and wall heat capacity were incorporated

into the analysis of unsteady laminar flow and heat

transfer between two co-rotating disks in [20].

The last variant of rotating disks is the contra-

rotating system. It seemed that at the same rotational

Reynolds number the contra-rotating system tend to

generate turbulent flow more easily than rotor–stator

system [21,22]. Though both laminar and turbulent

computations had been conducted for 2:3� 105 6Re6
1:2� 106, laser Doppler anemometry measurements

confirmed only the turbulent computations. It was also

found that even for local rotational Reynolds number as

Nomenclature

Al constant in Eq. (7)

Ae constant in Eq. (8)

Cl constant in RNG k–e model

cl constant in Eqs. (7) and (8)

D diameter of the disk, m

h heat transfer coefficient, W/(m2 K)

k turbulent kinematic energy, J/kg

ll turbulent length scale, m

le turbulent length scale, m

Nu ¼ hD=k, Nusselt number

Nu average Nusselt number over the radius

P pressure, Pa

qw wall heat flux, W/m2

r local radius, m

R radius of the disk, m

Re ¼ XR2=m, rotational Reynolds number

Rey wall-distance-based turbulent Reynolds

number, Eq. (4)

s distance between the rotor and stator, m

T temperature, K

TLC temperature of liquid crystal, K

Ta ambient temperature, K

U axial velocity component, m/s

V radial velocity component, m/s

W azimuthal velocity component, m/s

x coordinate in axial direction, m

y normal distance from cell to wall, Eq. (4), m

Greek symbols

a inverse effective Prandtl number

e dissipation rate of turbulent energy, J/(kg s)

/ generalized variable in Eq. (2)

j von Karman constant

k air thermal conductivity, W/(mK)

l molecular viscosity, kg/(m s)

lt turbulent viscosity, kg/(m s)

leff effective viscosity, kg/(m s)

m kinematic viscosity, m2/s

X rotating angular speed, rad/s

q air density, kg/m3

C generalized diffusion coefficient

CX disk angular velocity ratio, X2=X1
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low as �rr2Re ¼ 2:2� 104 (where �rr ¼ r=R), laminar

boundary layers formed on the disks but the radial in-

flow in the non-rotating core was always turbulent. The

effect of the perpendicular motion of a disk in contra-

rotating system on the load, torque and heat transfer are

computed in [23] for low Reynolds numbers (Xs2=
m6 100). The shrouded sidewalls and the temperature

difference between the disks can influence the flow pat-

tern and heat transfer performance significantly. Nu-

merical simulations to this kind of turbulent flow

presented multiple results [24].

The objective of this paper is to numerically and

experimentally investigate the turbulent heat transfer

performance on a heated stationary disk placed at a

short distance from another disk rotating at high speed.

The rotating disk is kept adiabatic and used as a cooling

mechanism. The effects of the rotational Reynolds

number and the disk-distance on the fluid flow in be-

tween the disks and the heat transfer on the stationary

disk will be addressed.

2. Experimental methods

A steady-state liquid crystal technique was employed

for detecting isotherms on the stationary disk. This

technique has been described in detail by Saniei and Dini

in [25]. Liquid crystal thermography is an effective

technique to measure temperature. This is because that

liquid crystals undergo a reversible change in color due

to a change in temperature. The color change is due to

the selective reflectivity of color based upon the helical

structure of the crystal itself. This helical structure is

quite sensitive to temperature changes. Therefore, when

a temperature change occurs, the structure of the helix

changes, which in turn changes the reflective properties

of the crystals causing them to reflect a different wave-

length of light (a different color). The temperature at

which the crystals undergo this transformation is spe-

cific. This color change gives an accurate indication of

temperature. When a color shows up at a given point

and the corresponding temperature is TLC, the heat

transfer coefficient of this point is determined by

hðxÞ ¼ qwðxÞ
TLCðxÞ � Ta

ð1Þ

where qwðxÞ is the local convective heat flux of the wall

on which the liquid crystal is coated. qw is provided by a

surface heater and determined by the power supply and

the area of the disk surface. Ta denotes the ambient

temperature. The liquid crystal for the current experi-

ment was the narrowband-type R35C1W.

Fig. 1 shows the experimental system in this study.

The stationary and the rotating disks were made of

Plexiglas and each had a diameter of 20.5 cm. The sta-

tionary disk was 0.9 cm thick with a styrofoam insula-

tion cover of 3.2 cm to minimize the conduction. The

rotating disk was 0.9 cm thick with no insulation.

The stationary disk, which is suspended from the top,

was painted black facing down. A flat heater, a model

KHR 8/10 made by Omegalux, was affixed to the painted

surface using rubber sealant to provide uniform heat flux

boundary condition. The heater was connected to a

HP6633A power supply. A grid was drawn on the heater

with white ink so that the location of the color change of

the liquid crystal could be observed and recorded. Micro-

encapsulated liquid crystals were air-brushed on the

surface of the circular heater. The rotating disk was at-

tached to the shaft of a variable speed motor, a model

22VM51–020–5 made by Honeywell. The speed of the

motor was adjusted by the amount of voltage supplied by

an E&L Instrument PS-01 power supply. In addition, a

thermocouple was placed near the outer edge of the up-

per disk to measure the ambient temperature.

Measurements were taken for disk-distances 0.5, 0.75

and 1.0 cm. Further close distances were not involved

because the vibration of the rotating disk may cause the

disks to collide. Once the disks had been placed at the

appropriate distance, the power supply for the heater was

adjusted to its appropriate value, as was the motor�s
speed. Then the system was allowed to reach its steady-

state condition (30–60 min). A steady isotherm was ob-

served which corresponded to a specified temperature

according to the color–temperature calibration. Iso-

therms were observed through a mirror placed beneath

the transparent rotating disk, parallel to the disk surface.

Before formal measurement, the relationship between

the rotational speed of the motor and its power input, as

well as the resistance of the circular heater, had been

Fig. 1. Experimental apparatus.
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calibrated. The locations of the isotherms were recorded

along with the voltage input of the motor and the current

and voltage input of the heater. The ambient temperature

was also recorded at the same time. Once these mea-

surements were recorded, the power input to the heater

was changed and the color ring would move to a new

position correspondingly. This procedure was repeated

and a series of isotherms could be obtained. The rota-

tional speed was kept constant for each run so that iso-

therms could be observed at different positions on the

stationary disk. After the measurements were com-

pleted for a rotational speed, a new rotational speed

was selected. Once all speeds had been investigated, the

disk-distance was changed and the process started once

again.

Uncertainty analysis was carried out for the experi-

mental Nusselt numbers [26]. The uncertainty of the

Nusselt number ranged from 3.0% to 8.0% for different

runs. It is important to note the uncertainty due to the

location of the isotherms formed by the liquid crystal.

As mentioned above, the color play on the disk to which

the liquid crystals were applied was viewed through the

rotating disk using a mirror. The closer the color ring

progressed to the center of the disk, the less precision

found in the location of the color ring. Near the edge of

the disk, the location of the color ring was distinguish-

able within �1 mm. The inmost radius on which the

uncertainty was acceptable was r=R ¼ 0:244, where the

uncertainty of the color ring location was within �3

mm. This increase in uncertainty is due to the fact that

liquid crystals give a higher resolution when there is a

large temperature gradient. Near the center, the tem-

perature gradient is less pronounced.

3. Numerical analysis

The problem under study is a steady, axisymmetric

swirling flow and heat transfer. Though many different

turbulence models have been developed, e.g. two-equa-

tion model, RSM and large eddy simulation, the RNG

k–e turbulence model is usually considered a desirable

selection regarding rotating or swirling flow. For weakly

to moderately strained flows, the RNG model tends to

give results comparable to the standard k–e model. In

rapidly strained flows, the RNG model yields a lower

turbulent viscosity than the standard k–e model. Thus,

the RNG model is more responsive to the effects of rapid

strain and streamline curvature than the standard k–e
model, which explains the superior performance of the

RNG model for certain classes of flows including rota-

tional flow.

The RNG k–e turbulence model is derived from the

instantaneous Navier–Stokes equations, using the ‘‘Re-

Normalization Group’’ method [27]. The analytical

derivation results in a model with constants different

from those in the standard k–e model and an additional

term in the e equation. The general form of the equa-

tions governing an axisymmetric rotating flow can be

expressed as

o

ox
ðqU/Þ þ 1

r
o

or
ðqrV /Þ ¼ o

ox
C
o/
ox

� �

þ 1

r
o

or
rC

o/
or

� �
þ S/ ð2Þ

The source terms, S/, and the diffusion coefficient, C, for
the different variables, /, in the RNG k–e model are

Table 1

Source term expressions for the different independent variables in Eq. (2) and constants in RNG k–e model

/ Source term S/ C

1 – –

U � oP
ox þ o

ox C oU
ox

� �
þ 1

r
o
or rC oV

ox

� �
leff

V � oP
or þ o

ox C oU
or

� �
þ 1

r
o
or rC oV

or

� �
� 2C V

r2 þ
qW 2

r leff

W � qVW
r � W

r2
o
or ðrCÞ leff

k Gk � qe akleff

e e
k ðC1Gk � C2qeÞ � R aeleff

T 0 aTleff

S2 ¼ 2 oU
ox

� �2 þ oV
or

� �2 þ V
r

� �2h i
þ oW

ox

� �2 þ r o
or

W
r

� �� �2 þ oU
or þ oV

ox

� �2
Gk ¼ ltS

2

R ¼ Clqg3 1�g=g0ð Þ
1þbg3

e2

k

g ¼ Sk
e

lt ¼ Clq k2

e

leff ¼ l þ lt

Cl ¼ 0:0845 C1 ¼ 1:42 C2 ¼ 1:68 g0 ¼ 4:38 b ¼ 0:012
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given in Table 1. The inverse effective Prandtl number

for k, e and T is determined by

a � 1:3929

a0 � 1:3929

				
				
0:6321 a þ 2:3929

a0 þ 2:3929

				
				
0:3679

¼ l
leff

ð3Þ

where a0 ¼ 1:0 for k or e equation and a0 ¼ 1=Pr for

energy equation. In the high-Reynolds-number limit

ðl � leffÞ, ak ¼ ae ¼ aT ¼ 1:3929.
In consideration of the relatively drastic change of the

flow pattern near the solid wall, two-layer zonal model

has been adopted as near-wall treatment method in the

simulation. The advantage of this method lies in that the

whole domain is subdivided into a viscosity-affected re-

gion and a fully turbulent region. The demarcation of the

two regions is determined by a wall-distance-based tur-

bulent Reynolds number, Rey , which is defined as

Rey ¼
q

ffiffiffi
k

p
y

l
ð4Þ

where y is the normal distance from the wall at the cell

centers. In the fully turbulent region (Rey > 200), the

RNG k–e model is employed, while in the viscosity-

affected near-wall region (Rey < 200), the one-equation

model of Wolfshtein [28] is employed. In the one-equa-

tion model, the momentum equations and the k equation
are retained as described above. However, the turbulent

viscosity is computed from

lt ¼ qCl

ffiffiffi
k

p
ll ð5Þ

The e field is computed from

e ¼ k3=2

le
ð6Þ

The length scales in Eqs. (5) and (6) are computed from

[29]

ll ¼ cly 1

�
� exp

�
� Rey

Al

��
ð7Þ

le ¼ cly 1

�
� exp

�
� Rey

Ae

��
ð8Þ

The constants in above equations are: cl ¼ jC�3=4
l ,

Al ¼ 70, Ae ¼ 2cl. j is the von Karman constant,

j ¼ 0:42.
Fig. 2 shows the schematic diagram of the rotor–

stator system and the simulation domain. x-axis was

chosen as the axis of rotation. The disk on the right

hand represents the upper stator and the one on the left

represents the lower rotor. Geometries of the disks are

the same as the experimental counterparts. The simu-

lation domain takes a rectangular shape with the two

half-disks located in the center of the lower edge. The

width of the domain is the length of the disk diameter,

while its height is equal to one and a half of the disk

diameter. By trial runs, such a domain produced rela-

tively accurate results with a moderate grid mesh. The

result of grid sensitivity study showed that meshes of

168� 182 and 190� 212 gave average heat transfer

coefficients with a difference less than 1.3%. Therefore

the mesh of 168� 182 was adopted in the simulation. A

non-uniform grid was used to account for the high

gradient of velocity and temperature in the vicinity of

surfaces.

Thermal boundary conditions of the both disks were

consistent with those of the actual experiments. Only the

inside surface of the stator was heated with a uniform

heat flux. Other surfaces, of both the rotor and the

stator, were kept adiabatic. A special attention was paid

to the boundary conditions on the imaginary domain

border. It is impossible to give the actual velocity com-

ponents to this boundary. But it is plausible to give it a

gauge pressure of zero in the simulation. A 5% in the

turbulence intensity and a value of 10 for the turbulence

viscosity ratio (lt=l) have been defaulted for the possi-

ble backflow on this boundary.

SIMPLE algorithm incorporated in the FLUENT,

version 5.5, was adopted to solve this pressure–velocity

coupled problem. The second order upwind scheme was

employed for discretization of the physical parameters

except for the pressure corrective equation. As to the

pressure corrective equation, PRESTO! scheme was

used. This is a method of pressure interpolation that is

similar to the staggered grid schemes used with struc-

tured meshes [30]. The PRESTO! scheme provides im-

proved pressure interpolation in situations where large

body forces or strong pressure variation are present in

swirling flows. During the process of calculation, the

residual of every equation was monitored. The conver-

gence criterion is 10�8 for energy equation and 10�3 for

the others.

Fig. 2. Schematic diagram of the interacted rotor–stator system

and its numerical simulation domain. The rotor is adiabatic.

The stator is heated on its inner surface facing toward the rotor.
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4. Results and discussion

4.1. Flow pattern and temperature field

Fig. 3 shows the flow patterns around the rotor–

stator system as Reynolds number changes from 1:42�
105 to 3:33� 105 for a fixed disk-distance s ¼ 0:75 cm.

Comparing with the cases of single rotating disk [8] or

co-rotating disks [19], the flow patterns here are de-

flected towards the stationary disk instead of presenting

symmetrical streamlines. As the Reynolds number in-

creases, the deflection becomes more obvious. Influenced

by the pumping function of the rotor, the airflow in

vicinity of the stator travels around its corners and is

sucked into the gap between the disks. Streamlines on

the left side of the rotor are almost drawn perpendicu-

larly toward the surface of the disk, while those on the

right side of the stator are sucked onto the surface with

large angles. Another interesting phenomenon is the

vortical eyes. There exists a vortical eye for each of the

high Reynolds number cases of Re ¼ 2:94� 105 and

3:33� 105. Their distances from the outer edge of the

stator are 0:263D and 0:184D respectively. These vortical

eyes indicate that the turbulent intensity is strengthened

as Reynolds number increases.

In order to see clearly the flow pattern and the tem-

perature changes in the gap between the disks, a blow-up

plot of streamline and temperature is shown in Fig. 4.

There are two re-circulating regions around the corners

of the stationary disk (Fig. 4(a)): one on the top and the

other just down into the gap. These re-circulating re-

gions formed as a result of the flow separation around

the sharp corners. Though the re-circulating region

down into the gap is much smaller than the one on the

top, it has a strong influence on heat transfer on the

stator. This feature will be discussed in the following

sections. In general, the flow pattern inside the gap be-

longs to the Stewartson-type, where there is no evidence

of rotating core inside the gap but for a small one near

the opening. In the gap streamlines densely stuck to the

surface of the rotor, while those near the stator are

sparsely distributed. Together with the radial and azi-

muthal velocity distributions in Figs. 5 and 7, it is clear

that there exists a boundary layer on the rotor but none

on the stator. The flow is outward in the boundary layer

on the rotor and it is mainly inward near the stator. This

is just an actual verification of the theory of Zandbergen

and Dijkstra [4], which stated that for finite disks, a

system open to the ambience tends to produce Ste-

wartson-type flow pattern. Similar streamline patterns

are also found in the other cases.

Fig. 4(b) represents the distribution of the iso-

therms in the gap. Outside the gap there was no ap-

parent temperature rise over that of the ambient air.

The temperature of the ambient air is kept at 300 K. It

can be seen that the changes of the temperature are

uneven: it increases slowly in the outer half part and

quickly in the center part. The temperature rise at the

midway of the centerline is less than 3 �C, while it

reaches over 15 �C near the rotational axis. Since less

airflow can penetrate into the depth of the gap passage,

the section near the axis is not cooled as effectively as the

outer section.

4.2. Characteristics of the velocities and temperature

inside the gap

Acting as a barrier, the stationary disk blocks the

flow pumped by the rotating disk. Thus the unique

feature of the flow in a rotor–stator system is the

asymmetry of the distributions of the physical variables.

A typical case, s ¼ 1:0 cm, Re ¼ 3:33� 105, is taken here

for discussion. Fig. 5 presents the distributions of the

radial velocity component, V , along the rotational axis

at five radii inside the gap. It is interesting to see that all

profiles of the radial component cross the point of
Fig. 3. Flow pattern around the rotating–stationary disk sys-

tem at different Reynolds numbers. Disk-distance is 0.75 cm.
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x=s ¼ �0:14. In the right part from this point the flow is

mainly negative, indicating that the air flows inwards.

From the inlet of the gap to the axis the radial velocity

decreases gradually, till r=D ¼ 0:1 a very small positive

velocity occurs in the central part. As to the situation in

the vicinity of the stator wall (x=s ¼ 0:5), the changes of
the velocity become a little complicated. Opposite to the

negative values of r=D ¼ 0:1–0:4, the velocity for

r=D ¼ 0:488 is positive. This indicates the existence of a

local re-circulating region, which is consistent with the

separated region around the inlet corner in Fig. 4(a). In

the left part from the crossing point, all velocities are

positive, meaning outward flows. The velocity becomes

greater as it flows outward. For each profile of r=D there

exists a maximum of radial velocity, which is located

approximately at x=s ¼ �0:46.
The axial velocity component U is shown in Fig. 6.

This velocity component is much smaller than the radial

one. The curves for r=D ¼ 0:1–0:4 are similar patterns,

except for r=D ¼ 0:4 being with a positive part near the

inlet. Negative velocities mean that the air flows from

the stator toward the rotor. The axial velocities for

r=D ¼ 0:1–0:4 reach their minimum in the range of

x=s ¼ �0:2–0. Differences among them are small for

x=s < �0:2 but obvious for x=s > �0:2. The profile for

r=D ¼ 0:488 is rather different from the others. The

positive values in the central part indicate that the air

tends to re-attach to the stator surface after it comes in

around the corner. The right negative part on the curve

represents the flow direction of the upper re-circulating
Fig. 5. Radial velocity component inside the gap between the

rotor and the stator.

Fig. 4. Blow-up of the flow field and temperature profile in the gap between the rotor and the stator (Re ¼ 3:33� 105, s ¼ 1:0 cm).

(a) Flow field; (b) temperature profile.
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region. The left negative part on the curve reflects the

prerequisite tendency of the stream before it is thrown

out of the gap.

Fig. 7 gives the distributions of the azimuthal velocity

W . Comparing to the radial velocity profile (Fig. 5)

where there is a velocity cross-over point in x=s ¼ �0:14,
the velocity cross-over point in Fig. 7 is located about

the mid-plane of the gap. The velocity values on the

right half are below 2 m/s, while those on the left, i.e.

near the rotating disk, are relatively much higher.

Though they have the same feature of a high-velocity

layer near the rotor wall, the distributions are quite

different in view of the whole gap. For r=DP 0:3, the
velocity declines gradually apart from the high-velocity

thickness. But for smaller radii, the velocity is hardly

changeable, which means that the fluid near the axis was

rotating almost like a rigid body. In addition, the change

of the velocity with radius for the right part is opposite

to that for the left part. To the right of the cross-over

point, the azimuthal velocity becomes smaller as the

radius increases. It is nearly zero at r=D ¼ 0:488. This
reveals that for the fluid near the stator, the inner part

rotates more strongly than the outer part near the edge

of the disk.

For temperature distributions inside the gap, Fig. 8

plotted the excess temperature, T � Ta, used to indicate

the temperature rise of the fluid. The profiles for differ-

ent radii are similar. Most temperature drops happen

within x=D < 0:3 from the stator surface. Then it climbs

gradually towards the rotor. Because the isotherms in

the gap take the U shape approximately and pile up

from high to low (see Fig. 4(b)), it is not so hard to

understand such temperature profiles shown in Fig. 8.

Degrees of the temperature rise are quite different

for different radii, with minimums from nearly zero

of r=D ¼ 0:488 to 6 �C of r=D ¼ 0:1. This denotes

the different heat transfer rate in different depth of the

gap.

Fig. 6. Axial velocity component inside the gap between the

rotor and the stator.

Fig. 7. Azimuthal velocity component inside the gap between

the rotor and the stator.

Fig. 8. Temperature profiles inside the gap between the rotor

and the stator.
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4.3. Local heat transfer characteristics

Fig. 9 shows the experimental results, cases of

s ¼ 0:50; 0:75 and 1.00 cm, along with the numerical

results. It was difficult in the experiment to obtain

meaningful data around the center of the disk because of

low temperature gradient. Because the heat transfer

tends to change complicatedly near the outer edge, as

shown by the numerical results in the figure, the color

pattern of the liquid crystal became less distinguishable.

Therefore, only the experimental data in the range of

r=R ¼ 0:24–0:92 are available for the numerical results

to compare with.

In general, trends of the experimental results are

compatible to those of numerical simulations. The ten-

dency of the Nusselt number for both results is consis-

tent, though the experiments produced lower heat

transfer rate than the simulation in most cases. For the

case of Re ¼ 1:42� 105, the simulation revealed that

s ¼ 0:75 cm has the best heat transfer performance,

which is just the situation of the experimental data for

r=R > 0:6. But for cases of Re ¼ 2:10� 105 and 2:94�
105, experimental results show that heat transfer de-

creases monotonically with the increase of the disk-dis-

tance, while by the numerical results the case of s ¼ 0:75
cm remains the best within the range of the experimental

parameters. Similar discrepancy exists in the case of

Re ¼ 3:33� 105. Another noteworthy point is the dif-

ferences of Nusselt number for different disk-spaces in

the simulated results. At lower Reynolds number, the

differences of the numerical Nusselt number are less

noticeable for r=R < 0:9. The difference lies mainly in

the region near the edge. For higher Reynolds numbers,

however, the difference at various disk-spaces is much

more apparent.

4.4. Effect of the disk-distance

The effect of the distance has been a main focus

during this investigation. Fig. 10, in which Reynolds

number varied parametrically, shows the distributions of

the local Nusselt number for different disk-distances.

These distributions are based on the numerical results

only. When the disk-distance changes from 0.25 to 1.0

cm, the distribution has changed not only for the values

but also for the profile shapes. In general, the distribu-

tions of s ¼ 0:50 and 0.75 cm show steeper slope in the

whole radius range, meaning higher average heat

transfer rate. The slope of the profile for s ¼ 1:00 cm has

deteriorated to some extent. The case of s ¼ 0:25 cm

presents the flattest distributions in all situations.

The shapes of the profiles are quite different from one

another. There exists a peak and a valley in the distri-

butions of s ¼ 0:75 and 1.00 cm for a given Reynolds

Fig. 9. Comparison of the experimental and numerical results of heat transfer.
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number. The valleys are very close to the outer edge of

the disk, while the location of the peak is apparently

away from the edge, it is approximately r=R ¼ 0:92 and

0.95 for the cases s ¼ 1:00 and 0.75 cm, respectively. No

obvious shift of the peak takes place when Reynolds

number changes for a given disk-distance. When the

disk-distance decreases to 0.5 cm, only at Re ¼ 3:33�
105 the feature of peak–valley has been observed, and

the peak and valley moved further close to the outer

edge. As the disk-distance changes to 0.25 cm, the phe-

nomenon of peak–valley disappeared completely, but

with more aggressive slope near to the edge. The small

re-circulating bubble on the surface of the stator down

into the gap (see Fig. 4(a)) is considered to be respon-

sible for the phenomenon of the peak and valley. In

general, there always exists a maximum of heat transfer

wherever the flow re-attaches to the heated surface [31–

33]. This is due to the location of the re-attachment is the

whereabouts of the thinnest boundary layer, accordingly

the location of the least thermal resistance. On the other

hand, the bottom of the valley is consistent with the

upper end of the re-circulating bubble, which stops at a

small distance from the outer edge of the disk. As the

disk-distance becomes small enough, the re-circulating

bubble exists no longer so that the phenomenon of peak

and valley disappears accordingly. It is interesting that

Hill and Ball also found the similar peak phenomenon

of heat transfer in their study about counter-rotating

disks [24].

The Reynolds number displays different influence on

the heat transfer when the disk-distance changes. Ac-

cording to the simulated results it is noted that the

Reynolds number imposes less influence on heat transfer

as the distance increases. From s ¼ 0:25 to 1.00 cm,

profiles of Nusselt number tend to cluster more closely.

For the case s ¼ 1:00 cm no significant difference among

the runs of various Reynolds numbers can be detected.

This implies that at larger disk-distances increasing

Reynolds number is not an appropriate way any more to

enhance the heat transfer in such a rotor–stator system.

For the purpose of identifying an optimum disk-

distance for heat transfer, the average heat transfer rate

on the surface has been used. Fig. 11 shows the variation

of the average Nusselt number with the relative disk-

distance for different Reynolds numbers. If the distance

between the rotor and the stator is very large, the effect

of the rotation of the rotor on the convective heat

transfer of the stator would be definitely alleviated, be-

cause the interaction between these two disks would

become insignificant. On the other hand, if the two disks

are very close, the flow inside the gap would be similar to

that of an infinite rotor–stator system, little mass of

coolant air can get into the gap and penetrate the depth

of it. Thus the heat transfer on the stator will degrade,

too. Based on this analysis it can be expected that, for a

fixed Reynolds number, there may exist a disk-distance

at which the average heat transfer performance reaches

its maximum. The results shown in Fig. 11 verified the

Fig. 10. Numerical distribution of the local Nusselt number for different disk-distances.
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analysis above. The maximum point of Nu for each given

Reynolds number is apparent. However, its location

shifts towards the smaller s values as Reynolds number

increases. Also observed in Fig. 11 is the fact that the

average heat transfer is more sensitive to disk-distances

at smaller s values than at larger s values.
Correlated with least-square-fit method, the rela-

tionship between the average Nusselt number and the

relative disk-distance as well as Reynolds number is as

following

Nu ¼ �1:016Re0:4664 þ 18:15Re0:6426
s
D


 �

� 126:3Re0:7485
s
D


 �2

þ 707:5Re0:7749
s
D


 �3

ð9Þ

The error of correlation (9) is under 3%. The opti-

mized disk-distance, at which the average heat transfer

rate reaches its maximum for given Reynolds number, is

also shown in a dashed line in the figure. The location

for the maximum of the average heat transfer is corre-

lated as

s
D


 �
Nu;max

¼ Re�0:0264 0:0595
h

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3:541� 8:551Re�0:0795Þ � 10�3

p i
ð10Þ

5. Conclusions

Experiments and numerical simulations have been

conducted to investigate the heat transfer and flow be-

tween a rotating and a stationary disk. With the

blockage of the stationary disk, the flow pattern gener-

ated by the rotating disk shows an asymmetrical ten-

dency. The main stream of the airflow tends to deflect

towards the stator side. There exists a small re-circu-

lating region on the surface of the stator, which is near

the inlet of the gap. This small re-circulating region acts

as an important role to the fluid flow inside the gap and

the heat transfer on the stationary disk. The flow in the

gap is basically a Stewartson-type, which means a

boundary layer formed on the rotor wall but none on

the stator wall. The numerical simulation showed a

similar distribution of local heat transfer rate to that of

experiment. In general, the numerical simulation pro-

duced higher heat transfer rate comparing to the ex-

perimental result. The discrepancy tends to increase with

increasing Reynolds number. Based on the numerical

results, the effect of the disk-distance and the rotational

Reynolds number on the heat transfer on the stator has

been discussed, and the relationship between the average

Nusselt number and the two main influential factors, the

relative disk-distance s=D and the Reynolds number Re,
has been correlated. For a given Reynolds number there

is a corresponding optimum disk-distance, at which the

average heat transfer reaches its maximum. The maxi-

mum point moves towards the small disk-distance as the

Reynolds number increases.
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